Predicting Future Changes in O₃ and OH: Three-Dimensional Global Model Studies Cynthia S. Atherton Man's activities may significantly affect the concentrations of a number of chemically and radiatively important tropospheric gases, including ozone (O_3) , the hydroxyl radical (OH), nitrogen oxides (NO_X) , and peroxyacetyl nitrate (PAN). Ozone is formed when carbon monoxide (CO), methane (CH_4) , and NO_X react in the presence of sunlight. Ozone can absorb both ultraviolet and infrared radiation. Hydroxyl radical formation in the troposphere is initiated by the photolysis of O_3 . Reaction with the hydroxyl radical is the main loss for many tropospheric species. Thus, both O_3 and OH play key roles in global chemical and climate changes. The equations governing the concentrations of tropospheric species are highly non-linear. Predicting how changes in source emissions affect concentrations globally is not straightforward. We have developed a global, three-dimensional, chemistry-transport model (CTM) of the troposphere that includes the oxidation cycles of CO, CH4, and non-methane hydrocarbons (NMHCs). The model predicts the concentrations of 76 species, including O3, OH, PAN, NO, NO2, HNO3, CO, isoprene, and other NMHCs. Here we present results of a baseline present-day scenario, and scenarios which quantify how reductions and increases in source emissions affect the global distributions of a number of species. This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.